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Goal

[0 Determination of the DtN operator for infinite, lossy and locally perturbed
hexagonal periodic media.
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Overview of the method

O Factorization of the DtN operator involving two non local operators
0 a DtN operator for a half-space problem
[0 a DtD operator taking advantage of the symmetry properties
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0 a DtD operator taking advantage of the symmetry properties

O Characterization of the DtN operator for a half-space problem
[0 Floquet-Bloch transform
0 Family of elementary strip problems
O Family of stationary Riccati equations

[0 Characterization of the DtD operator

O Affine valued equation — non standard integral equation
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Introduction

Previous works

Two classes of methods

[l The periodicity can be handled via homogenization techniques

O G. Allaire, C. Conca, M. Vanninathan (1999),
O G. Bouchitté, S. Guenneau, F. Zolla (2010).

[l Keeping the periodicity but considering only

O finite media

O M. Ehrhardt, H. Han, C. Zheng (2009),
O M. Ehrhardt, C. Zheng (2010),

0 Z. Hu, Y. Lu (2008),

O L. Yuan, Y.-Y. Lu (2006, 2007).

O media that can be reduced to finite domains

O A. Figotin, A. Klein (1997, 1998),
O R.-C. Gauthier (2007).
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Introduction

Previous works

O Infinite two dimensional periodic media containing local defects

O S. Fliss (PhD Thesis, 2009);
O S. Fliss, P. Joly (2009).

Main assumptions of these works
O orthogonality of directions of periodicity,
0 commensurate periodicity lengths,
0 dissipative Helmholtz equation.

For hexagonal periodic media, the corresponding periods
would not be commensurate
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Introduction

Applications of hexagonal lattices

[0 Quantum mechanics: the mathematical formulation leads to Schrodinger
operator

Au = —Au+ (V +ip)u.

[J Phononics: the operator involved is the elasticity system
Au = —dive(u) + w?pu

[1 Photonics: electromagnetic propagation is described by the vector Maxwell's
equations which in 2D reduce to

Transverse electric polarizations case:  Au := Au + w?n’u

. o . 1
Transverse magnetic polarizations case: Au := —div (—QVu) + w?u
n
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Introduction

Applications of hexagonal lattices

[0 Quantum mechanics: the mathematical formulation leads to Schrodinger
operator

Au = —Au+ (V +ip)u.

[J Phononics: the operator involved is the elasticity system
Au = —dive(u) + w?pu

[1 Photonics: electromagnetic propagation is described by the vector Maxwell's
equations which in 2D reduce to

Transverse electric polarizations case:  Au := Au + w?n’u

. o . 1
Transverse magnetic polarizations case: Au := —div (—QV’LL) + w?u
n

The defect is taken into account by adding a bounded obstacle
or locally perturbing the coefficients

I. Lacroix-Violet (Université Lille 1) Transparent boundary conditions

8/ 24



Introduction

Problem setting

00 Domain: Infinite photonic crystal © = R? with a localized defect

o O cell with defect

@ %% boundary of Q°

00 =0\

@ ey, ey : directions of
periodicity

[J Model problem: Dissipative Helmholtz equation

Au+pu=f, in Q. J

I. Lacroix-Violet (Université Lille 1) Transparent boundary conditions

9/ 24



Introduction

Problem setting

0 Hexagonal symmetry

Definition for a domain

A domain O of R? has hexagonal symmetry if there exists a rotation of angle 27/3,
denoted ©;, /3 under which O is invariant.

Definition for a function

Let O be an open set with hexagonal symmetry and let g be a real or complex
valued function defined on O. Then, g has hexagonal symmetry if

g=g9g° 9271'/3'
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Introduction

Problem setting

[0 Assumptions
O pis a local perturbation of a hexagonal periodic function pper
P = Pper + PO,

O for all x = (z,y) € Q and all (p,q) € Z2, pper (X + pe1 + qea) = pper(x)
O pper and pg haye hexagonal symmetry
0 Supp(po) C

O p satisfies the dissipation property
|Im p(x)| > pp > 0, Vx € Q. (1)

0 The source f is compactly supported in QF and has hexagonal symmetry.

(1) guarantees existence and uniqueness of finite energy solutions

[0 Goal: Propose a method to solve the Helmholtz equation in the infinite domain
€ under these assumptions
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Introduction

Idea of the method

00 Key idea Reduce the problem to a boundary value problem set in the cell

— Derive suitable transparent boundary condition on X?
associated with a DtN operator A
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Introduction

Idea of the method

00 Key idea Reduce the problem to a boundary value problem set in the cell

— Derive suitable transparent boundary condition on X’
associated with a DtN operator A

0 More precisely u? := u|q: solves the interior problem

Aut +pul = f, in QF

8u‘ +Aut=0 on X!
vt

ut(9)

Ve

{ Au(p) + pu®(¢) =0, in Q°
u¢(p) = ¢, on X¢

where A such that A¢p = —

exterior problem

on X% with u®(¢) the unique solution of the
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Introduction

Idea of the method

O Main steps of the method

O Factorization of A: involving
@ a half-space DtN operator A7
@ a DtD operator Dy, /3
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v |op
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Introduction

Idea of the method

O Main steps of the method
O Factorization of A: involving
@ a half-space DtN operator A7
@ a DtD operator Dy, /3
0 Characterization of A: Using an adapted Floquet-Bloch transform, A can

be computed via the resolution of a family of elementary cell problems and a
family of Riccati operator equations.

U Characterization of D, /3: D, /5 solves an affine operator-valued equation.
In practice the idea is to consider this equation using Floquet-Bloch variables =—-
a set of non standard integral equations with constraints.
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Introduction

Restriction and extension operators

0 Restriction operator Ry /3
L322 —  L2(29)
¢ = Plso
[ Extension operator Ey./3: Inverse of Ry /3

Esr/30|s0 = ¢
VQS S LQ(EO), E27'r/3¢|@2ﬂ_/320 = ¢ & @—277/3
E2ﬁ/3¢|®§7r/320 =¢o @2—27r/3
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Determination of the DtN operator

Determination of the DtN
operator
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Determination of the DtN operator Factorization of the DtN operator

Factorization of the DtN operator

Theorem

The operator A admits the factorization
A = E2ﬂ/3 0] RH OAH o] Dzﬂ-/;g

where R is a restriction operator from ¥ to 0.
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Theorem
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Determination of the DtN operator Characterization of the half-space DtN operator

Characterization of the half-space DtN operator

[] Half-space problem: For any ¢ we want to compute the solution u*?(¢) of

. At (¢) + puf (¢) = 0, in O
utl (¢) = o, on £,
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Characterization of the half-space DtN operator

[] Half-space problem: For any ¢ we want to compute the solution u*?(¢) of

Aut (¢) + put (¢) = 0, in QF,

H

- { u(¢) = ¢, on ©1,
du'l (¢)

= The half-space DtN operator : A/ ¢ =

ot oy
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Determination of the DtN operator Characterization of the half-space DtN operator

Characterization of the half-space DtN operator

[] Half-space problem: For any ¢ we want to compute the solution u*?(¢) of

Aut (¢) + put (¢) = 0, in QF,

H

- { u(¢) = ¢, on ©1,
du'l (¢)

= The half-space DtN operator : A/ ¢ =

ot oy

[J Remark: the half-space is infinite and periodic in the y-direction

—> we use the Floquet-Bloch transform to reduce the problem
to k-QP boundary data.
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Determination of the DtN operator Characterization of the half-space DtN operator

Characterization of the half-space DtN operator

[] Half-space problem: For any ¢ we want to compute the solution u*?(¢) of

Aufl(§) + pufl (9) =0, in QM
H
- { () =9, on XA,

H
= The half-space DtN operator : A7 ¢ = du 1({¢) :
8V SH

0 k—QP boundary data: ¢(y + qL) = e L p(y)

Floquet-Bloch transform qbk(y) = ,/# Y mez Py + mL)e™™*L and its inversion
m/L
formula ¢(y) = % | ¢r(y)dk imply that the solution for arbitrary boundary
—m/L
data is obtained by superposing the solutions for k—QP boundary data.

o E[ )
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

@ Cyo: reference cell,
@ V,, =pe; +qes,
eVpeN,qeZ, Cpq:C00+qu.

°Q,= quz Cpq: vertical strip
containing Cpo.

o X : oriented boundaries for a cell Cyy

pq
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 The propagation operator

Definition

For any ¢ defined on Xf,, the propagation operator P, is given by

Pk¢ = U'H(gb)‘glio .
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 The propagation operator

Definition

For any ¢ defined on Xf,, the propagation operator P, is given by

Ped = u (B ¢)

g °
E10
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 The propagation operator

Definition

For any ¢ defined on Eéo, the propagation operator Py, is given by

PATQS = ’U,H(QS)|E{O .

Theorem

| \

For any k—QP boundary data ¢ defined on $¥, the solution u (¢) of the half-space
problem is given by

weN, gz, uf(9)], =TI, -

Pq

N
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

U Elementary problems
O Ef(¢) is the unique k—QP solution of

AE() +pEr(¢) =0, in Bilg, =¢
E{(¢) = ¢, on Zfo, v N

Ef;(qzﬁ) 0, on E’{O,

O E}(¢x) is the unique k—QP solution

of : By =¢
T P _ H ET| e = 0
AEk(QS) + pEk(¢) - 07 n QOa k1350

E]:(¢) = 07 on 2605
Ep(¢) = ¢, on .

h(d) = BL@)o, and  ch(d) = Bi(6)le,,
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 Elementary problems

/By, =0  Eilsg, =@

et(9) = Bu(@)|e, and  en(d) = Ep(d)le, -

= By linearity uff := u'?(¢) satisfies
W], = eh(d) + ch(Pro),

ufl|, = Ef(6) + BL(Pro).
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data
[0 Determination of Py: Riccati equation

/ _ S _
Ek|2{~0 =0 Eilsg, = ¢

E]::|Zgo == 0

By linearity and periodicity:

ey, = Bi(8) + Bi(Pro),  u'l|, = Bi(Pug) + E{(Pi9)
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 Determination of P.: Riccati equation

By linearity and periodicity:

ufl|, = Ef(¢) + Ep(Pro), |, = EL(Pro)+ Ef(P}o)

The continuity of the normal derivative across Z{O yields

8(uH‘C““) _ 8(uH|cm)

ov ov

£ 12
E10 E10

I. Lacroix-Violet (Université Lille 1) Transparent boundary conditions

21/ 24



Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 Determination of P.: Riccati equation

By linearity and periodicity:

ufl|, = Ef(¢) + Ep(Pro), |, = EL(Pro)+ Ef(P}o)

The continuity of the normal derivative across Z{O yields

8(uH‘C““) _ 8(uH|cm)

ov ov

£ 12
E10 E10

that is

(VE; (¢) + VEL, (P19)) - vIse, = — (VEL (Pr¢) + VEL (Pi0)) - vlsz,
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Determination of the DtN operator Characterization of the half-space DtN operator

[0 Determination of Py: Riccati equation

(VEL (¢) + VEL, (Pr9) - vIse, = — (VE; (Pi¢) + VEL (Pi9)) - vIse,

Definition

For all function ¢ on §, we introduce the following local DtN operators
2fo

Této = VEL®)- vy T = VEL(@) -v
Telo = VEL(@) v |ss, o6 = VE(9) -v

12
Z10

where v is the outgoing unit normal to Cyg.

V.

\:Il?i?i\\‘ \71,7777\\\ /, \’1,7777\\\ \’1,7777\\\ rr
o T, LT e e, Y
ey e Ly ey e )
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Determination of the DtN operator Characterization of the half-space DtN operator

[0 Determination of Py: Riccati equation

(VEL (¢) + VEL (Pr9)) - Vs, = — (VEL, (Pro) + VEL, (Pi6)) - vlse,

Definition
For all function ¢ on §, we introduce the following local DtN operators
Téo = VE(®) v g Tirén = VEL(9) v
Trto = VEL(@) v |, T = VEL(@) v

¥4
E10

£2
210

where v is the outgoing unit normal to Cyg.

. EZTQS + EM,PMZS — _EMPMZS _ T;:[Pf(b
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data
[0 Determination of P.: Riccati equation
. EZTQS + EM,PMZS — _EMPMZS _ T;:[Pf(b

Since ¢ is arbitrary, we get:

Theorem

The propagation operator Py, is the unique compact operator with spectral radius
strictly less than 1 solution of the stationary Riccati equation

THPE+ (TE+ TPy + T = 0.
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 Determination of P.: Riccati equation

Theorem

The propagation operator Py, is the unique compact operator with spectral radius
strictly less than 1 solution of the stationary Riccati equation

7;:27)]3 4 (7;56 4 Err)rpk 4 7;667’ —0.

Proposition

| \

For any k—QP boundary data ¢, the DtN operator, associated to the half-space
problem, is given by
Ao =T ¢+ T Pr ¢

N
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Determination of the DtN operator Characterization of the half-space DtN operator

Solution of (P) for quasiperiodic boundary data

[0 Determination of P.: Riccati equation

Theorem

The propagation operator Py, is the unique compact operator with spectral radius
strictly less than 1 solution of the stationary Riccati equation

7;:27)% 4 (7;56 4 nrr)rpk 4 77667’ —0.

Proposition

| \

For any k—QP boundary data ¢, the DtN operator, associated to the half-space
problem, is given by
Ao =T ¢+ T Pr ¢

For arbitrary boundary data :
L /L .
A = —/ A gy dk.
27 —n/L
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Conclusion

Done

[J We proposed a strategy to determine the DtN operator for infinite, lossy and
locally perturbed hexagonal periodic media.

To be done

[0 Numerical implementation and experiments
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Conclusion

Thank you for your attention !
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