Transparent boundary conditions for locally perturbed infinite hexagonal periodic media

I. Lacroix-Violet

Joint work with C. Besse, J. Coatléven, S. Fliss and K. Ramdani

Laboratoire Paul Painlevé INRIA Lille Nord-Europe - SIMPAF

I. Lacroix-Violet (Université Lille 1)

(日) (周) (日) (日)

Goal

 Determination of the DtN operator for infinite, lossy and locally perturbed hexagonal periodic media.

Photonic crystal

∃ ► < ∃ ►</p>

Overview of the method

- Factorization of the DtN operator involving two non local operators
 - a DtN operator for a half-space problem
 - a DtD operator taking advantage of the symmetry properties

イロト 不得 トイヨト イヨト

Overview of the method

- **Factorization of the DtN operator involving two non local operators**
 - a DtN operator for a half-space problem
 - a DtD operator taking advantage of the symmetry properties
- Characterization of the DtN operator for a half-space problem
 - ➤ Floquet-Bloch transform
 - Family of elementary strip problems
 - > Family of stationary Riccati equations

イロト 不得 トイヨト イヨト

Overview of the method

- **Factorization of the DtN operator involving two non local operators**
 - a DtN operator for a half-space problem
 - a DtD operator taking advantage of the symmetry properties
- Characterization of the DtN operator for a half-space problem
 - ➤ Floquet-Bloch transform
 - Family of elementary strip problems
 - Family of stationary Riccati equations

Characterization of the DtD operator

 \succ Affine valued equation \rightarrow non standard integral equation

Outlines

2 Determination of the DtN operator

- Factorization of the DtN operator
- Characterization of the half-space DtN operator

<ロ> (日) (日) (日) (日) (日)

Introduction

Introduction

2

イロト イヨト イヨト イヨト

Previous works

Two classes of methods

The periodicity can be handled via homogenization techniques

G. Allaire, C. Conca, M. Vanninathan (1999),

G. Bouchitté, S. Guenneau, F. Zolla (2010).

Keeping the periodicity but considering only

≻ finite media

- □ M. Ehrhardt, H. Han, C. Zheng (2009),
- M. Ehrhardt, C. Zheng (2010),
- □ Z. Hu, Y. Lu (2008),
- L. Yuan, Y.-Y. Lu (2006, 2007).

media that can be reduced to finite domains

A. Figotin, A. Klein (1997, 1998),
 R.-C. Gauthier (2007).

・ロト ・聞ト ・ヨト ・ヨト

Previous works

Infinite two dimensional periodic media containing local defects

S. Fliss (PhD Thesis, 2009);
 S. Fliss, P. Joly (2009).

Main assumptions of these works

- > orthogonality of directions of periodicity,
- > commensurate periodicity lengths,
- > dissipative Helmholtz equation.

For hexagonal periodic media, the corresponding periods would not be commensurate

イロト イポト イヨト イヨト

Applications of hexagonal lattices

 Quantum mechanics: the mathematical formulation leads to Schrödinger operator

$$Au := -\Delta u + (V + ip)u.$$

Phononics: the operator involved is the elasticity system

$$Au:=-{\rm div}\sigma(u)+\omega^2\rho u$$

 Photonics: electromagnetic propagation is described by the vector Maxwell's equations which in 2D reduce to

Transverse electric polarizations case: A

$$Au := \Delta u + \omega^2 n^2 u$$

Transverse magnetic polarizations case:

$$Au:=-{\rm div}\left(\frac{1}{n^2}\nabla u\right)+\omega^2 u$$

イロト 不得 トイヨト イヨト

Applications of hexagonal lattices

 Quantum mechanics: the mathematical formulation leads to Schrödinger operator

$$Au := -\Delta u + (V + ip)u.$$

Phononics: the operator involved is the elasticity system

$$Au:=-{\rm div}\sigma(u)+\omega^2\rho u$$

 Photonics: electromagnetic propagation is described by the vector Maxwell's equations which in 2D reduce to

Transverse electric polarizations case: $Au := \Delta u + \omega^2 n^2 u$

Transverse magnetic polarizations case:

$$Au:=-{\rm div}\left(\frac{1}{n^2}\nabla u\right)+\omega^2 u$$

<ロト <部ト <きト <きト = 3

The defect is taken into account by adding a bounded obstacle or locally perturbing the coefficients

I. Lacroix-Violet (Université Lille 1)

Introduction

Problem setting

- Domain: Infinite photonic crystal $\Omega = \mathbb{R}^2$ with a localized defect

Model problem: Dissipative Helmholtz equation

$$\Delta u + \rho u = f$$
, in Ω .

ヘロト 人間 ト 人 ヨト 人 ヨトー

Problem setting

Hexagonal symmetry

Definition for a domain

A domain \mathcal{O} of \mathbb{R}^2 has hexagonal symmetry if there exists a rotation of angle $2\pi/3$, denoted $\Theta_{2\pi/3}$ under which \mathcal{O} is invariant.

Definition for a function

Let \mathcal{O} be an open set with hexagonal symmetry and let g be a real or complex valued function defined on \mathcal{O} . Then, g has hexagonal symmetry if

$$g = g \circ \Theta_{2\pi/3}.$$

・ロト ・聞ト ・ヨト ・ヨト

Problem setting

Assumptions

 $\succ~\rho$ is a local perturbation of a hexagonal periodic function $\rho_{\rm per}$

 $\rho = \rho_{\rm per} + \rho_0,$

 $\checkmark \text{ for all } \mathbf{x} = (x,y) \in \Omega \text{ and all } (p,q) \in \mathbb{Z}^2, \ \rho_{\mathsf{per}}\left(\mathbf{x} + p\mathbf{e}_1 + q\mathbf{e}_2\right) = \rho_{\mathsf{per}}(\mathbf{x})$

- $\checkmark~\rho_{\rm per}$ and ρ_0 have hexagonal symmetry
- ✓ $\mathsf{Supp}(\rho_0) \subset \Omega^i$

 $\succ \rho$ satisfies the dissipation property

$$|\operatorname{Im} \rho(\mathbf{x})| \ge \rho_b > 0, \qquad \forall \mathbf{x} \in \Omega.$$
(1)

> The source f is compactly supported in Ω^i and has hexagonal symmetry.

(1) guarantees existence and uniqueness of finite energy solutions

- Goal: Propose a method to solve the Helmholtz equation in the infinite domain Ω under these assumptions

 \blacksquare Key idea Reduce the problem to a boundary value problem set in the cell Ω^i

 $\implies {\rm Derive\ suitable\ transparent\ boundary\ condition\ on\ }\Sigma^i$ associated with a DtN operator Λ

・ロト ・聞ト ・ヨト ・ヨト

- Key idea Reduce the problem to a boundary value problem set in the cell Ω^i

 $\implies \text{Derive suitable transparent boundary condition on } \Sigma^i$ associated with a DtN operator Λ

 \bullet More precisely $u^i := u_{|\Omega^i|}$ solves the interior problem

$$\begin{cases} \Delta u^i + \rho u^i = f, & \text{in } \Omega^i \\ \frac{\partial u^i}{\partial \nu^i} + \Lambda u^i = 0 & \text{on } \Sigma^i \end{cases}$$

where Λ such that $\Lambda \phi = -\frac{\partial u^e(\phi)}{\partial \nu^i}$ on Σ^i with $u^e(\phi)$ the unique solution of the exterior problem

$$\left\{ \begin{array}{cc} \Delta u^e(\phi) + \rho u^e(\phi) = 0, & \text{in } \Omega^e \\ u^e(\phi) = \phi, & \text{on } \Sigma^i \end{array} \right.$$

イロト イポト イヨト イヨト 三日

- Main steps of the method
- **\bullet** Factorization of Λ : involving
 - ${\, \bullet \,}$ a half-space DtN operator Λ^H
 - $\bullet\,$ a DtD operator $D_{2\pi/3}$

3

・ロト ・聞ト ・ヨト ・ヨト

Introduction

Idea of the method

- Main steps of the method
- **\bullet** Factorization of Λ : involving
 - a half-space DtN operator Λ^H
 - a DtD operator $D_{2\pi/3}$

2 Characterization of Λ^H : Use of the periodicity property

- Main steps of the method
- **O** Factorization of Λ : involving
 - a half-space DtN operator Λ^H
 - a DtD operator $D_{2\pi/3}$

Observed Ploquet-Bloch transform, Λ^H : Using an adapted Floquet-Bloch transform, Λ^H can be computed via the resolution of a family of elementary cell problems and a family of Riccati operator equations.

- Main steps of the method
- **\bullet** Factorization of Λ : involving
 - a half-space DtN operator Λ^H
 - a DtD operator $D_{2\pi/3}$

Observed Provide the resolution of Λ^H : Using an adapted Floquet-Bloch transform, Λ^H can be computed via the resolution of a family of elementary cell problems and a family of Riccati operator equations.

3 Characterization of $D_{2\pi/3}$: Use of the hexagonal symmetry property

- Main steps of the method
- **\bullet** Factorization of Λ : involving
 - a half-space DtN operator Λ^H
 - a DtD operator $D_{2\pi/3}$

Observed Place Place

Observed Characterization of $D_{2\pi/3}$: $D_{2\pi/3}$ solves an affine operator-valued equation. In practice the idea is to consider this equation using Floquet-Bloch variables \implies a set of non standard integral equations with constraints.

イロン 不通 と 不良 と 不良 と 一度

Introduction

Restriction and extension operators

• Restriction operator $R_{2\pi/3}$

$$\begin{array}{rccc} L^2(\Sigma^i) & \to & L^2(\Sigma^0) \\ \phi & \mapsto & \phi|_{\Sigma^0} \end{array}$$

← Extension operator $E_{2\pi/3}$: Inverse of $R_{2\pi/3}$

$$\forall \phi \in L^{2}(\Sigma^{0}), \quad \begin{vmatrix} E_{2\pi/3}\phi \big|_{\Sigma^{0}} = \phi \\ E_{2\pi/3}\phi \big|_{\Theta_{2\pi/3}\Sigma^{0}} = \phi \circ \Theta_{-2\pi/3} \\ E_{2\pi/3}\phi \big|_{\Theta_{2\pi/3}^{2}\Sigma^{0}} = \phi \circ \Theta_{-2\pi/3}^{2} \end{vmatrix}$$

▶ figure

イロト イ部ト イヨト イヨト 二日

Determination of the DtN operator

э

イロト イヨト イヨト イヨト

Factorization of the DtN operator

Theorem

The operator Λ admits the factorization

$$\Lambda = E_{2\pi/3} \circ R^H \circ \Lambda^H \circ D_{2\pi/3}$$

where R^H is a restriction operator from Σ^H to Σ^0 .

イロン イ理ト イヨン イヨン

Factorization of the DtN operator

Theorem

The operator $\boldsymbol{\Lambda}$ admits the factorization

$$\Lambda = E_{2\pi/3} \circ R^H \circ \Lambda^H \circ D_{2\pi/3}$$

where R^H is a restriction operator from Σ^H to Σ^0 .

イロト イポト イヨト イヨト 三日

Factorization of the DtN operator

Theorem

The operator Λ admits the factorization

$$\Lambda = E_{2\pi/3} \circ R^H \circ \Lambda^H \circ D_{2\pi/3}$$

where R^H is a restriction operator from Σ^H to Σ^0 .

ullet Half-space problem: For any ϕ we want to compute the solution $u^H(\phi)$ of

$$(\mathcal{P}^H) \quad \left\{ \begin{array}{ll} \Delta u^H(\phi) + \rho u^H(\phi) = 0, \qquad \mbox{ in } \Omega^H, \\ u^H(\phi) = \phi, & \mbox{ on } \Sigma^H, \end{array} \right.$$

・ロト ・ 四ト ・ ヨト ・ ヨト

- Half-space problem: For any ϕ we want to compute the solution $u^H(\phi)$ of

$$(\mathcal{P}^H) \quad \left\{ \begin{array}{ll} \Delta u^H(\phi) + \rho u^H(\phi) = 0, \qquad \mbox{ in } \Omega^H, \\ u^H(\phi) = \phi, \qquad \mbox{ on } \Sigma^H, \end{array} \right.$$

$$\implies$$
 The half-space DtN operator : $\Lambda^H \phi = \left. \frac{\partial u^H(\phi)}{\partial \nu^H} \right|_{\Sigma^H}$

・ロト ・聞ト ・ヨト ・ヨト

- Half-space problem: For any ϕ we want to compute the solution $u^H(\phi)$ of

$$(\mathcal{P}^H) \quad \left\{ \begin{array}{ll} \Delta u^H(\phi) + \rho u^H(\phi) = 0, & \quad \text{in } \Omega^H, \\ u^H(\phi) = \phi, & \quad \text{on } \Sigma^H, \end{array} \right.$$

$$\implies$$
 The half-space DtN operator : $\Lambda^H \phi = \left. \frac{\partial u^H(\phi)}{\partial \nu^H} \right|_{\Sigma^H}$

Remark: the half-space is infinite and periodic in the y-direction

 \implies we use the Floquet-Bloch transform to reduce the problem to k-QP boundary data.

ヘロト 人間 ト 人 ヨト 人 ヨトー

- Half-space problem: For any ϕ we want to compute the solution $u^H(\phi)$ of

$$(\mathcal{P}^H) \quad \left\{ \begin{array}{ll} \Delta u^H(\phi) + \rho u^H(\phi) = 0, \qquad \mbox{ in } \Omega^H, \\ u^H(\phi) = \phi, \qquad \mbox{ on } \Sigma^H, \end{array} \right.$$

 $\implies \text{The half-space DtN operator}: \left. \Lambda^{H} \phi = \left. \frac{\partial u^{H}(\phi)}{\partial \nu^{H}} \right|_{\Sigma^{H}}.$

← k-QP boundary data: $\phi(y + qL) = e^{iqkL}\phi(y)$ Floquet-Bloch transform $\hat{\phi}_k(y) = \sqrt{\frac{L}{2\pi}} \sum_{m \in \mathbb{Z}} \phi(y + mL)e^{-imkL}$ and its inversion formula $\phi(y) = \sqrt{\frac{L}{2\pi}} \int_{-\pi/L}^{\pi/L} \hat{\phi}_k(y) dk$ imply that the solution for arbitrary boundary data is obtained by superposing the solutions for k-QP boundary data.

$$u^{H}(\phi) = \sqrt{\frac{L}{2\pi}} \int_{-\pi/L}^{\pi/L} u^{H}\left(\widehat{\phi}_{k}\right) dk.$$

イロト イヨト イヨト イヨト ヨー のくの

Solution of (\mathcal{P}^{H}) for quasiperiodic boundary data

Notation

- \mathcal{C}_{00} : reference cell,
- $\mathbf{V}_{pq} = p\mathbf{e}_1 + q\mathbf{e}_2$,
- $\forall p \in \mathbb{N}, q \in \mathbb{Z}, \quad \mathcal{C}_{pq} = \mathcal{C}_{00} + \mathbf{V}_{pq}.$
- Ω_p = ⋃_{q∈ℤ} C_{pq}: vertical strip containing C_{p0}.
- Σ^ℓ_{pq} : oriented boundaries for a cell \mathcal{C}_{pq}

The propagation operator

Definition

For any ϕ defined on $\Sigma_{00}^\ell,$ the propagation operator \mathcal{P}_k is given by

$$\mathcal{P}_k \phi = \left. u^H(\phi) \right|_{\Sigma_{10}^\ell}.$$

・ロト ・聞ト ・ヨト ・ヨト

The propagation operator

Definition

For any ϕ defined on $\Sigma_{00}^\ell,$ the propagation operator \mathcal{P}_k is given by

$$\mathcal{P}_k \phi = \left. u^H (E_k^{QP} \phi) \right|_{\Sigma_{10}^\ell}$$

・ロト ・聞ト ・ヨト ・ヨト

The propagation operator

Definition

For any ϕ defined on Σ_{00}^{ℓ} , the propagation operator \mathcal{P}_k is given by

$$\mathcal{P}_k \phi = \left. u^H(\phi) \right|_{\Sigma_{10}^\ell}.$$

Theorem

For any $k-{\sf QP}$ boundary data ϕ defined on $\Sigma^H,$ the solution $u^H(\phi)$ of the half-space problem is given by

$$\forall p \in \mathbb{N}, \ q \in \mathbb{Z}, \quad u^{H}(\phi)\big|_{\mathcal{C}_{pq}} = e^{\imath q k L} u^{H}((\mathcal{P}_{k})^{p} \phi)\big|_{\mathcal{C}_{00}}$$

<ロト <部ト <きト <きト = 3

Elementary problems

 $\bullet E_k^\ell(\phi)$ is the unique $k-\mathsf{QP}$ solution of

$$\left\{ \begin{array}{ll} \Delta E_k^\ell(\phi) + \rho E_k^\ell(\phi) = 0, & \mbox{ in } \Omega_0, \\ E_k^\ell(\phi) = \phi, & \mbox{ on } \Sigma_{00}^\ell, \\ E_k^\ell(\phi) = 0, & \mbox{ on } \Sigma_{10}^\ell, \end{array} \right.$$

2
$$E_k^r(\phi_k)$$
 is the unique $k - \mathsf{QP}$ solution of

$$\left\{ \begin{array}{ll} \Delta E_k^r(\phi) + \rho E_k^r(\phi) = 0, & \quad \mbox{in } \Omega_0, \\ E_k^r(\phi) = 0, & \quad \mbox{on } \Sigma_{00}^\ell, \\ E_k^r(\phi) = \phi, & \quad \mbox{on } \Sigma_{10}^\ell. \end{array} \right. \label{eq:eq:expansion}$$

$$e_k^\ell(\phi) = \left. E_k^\ell(\phi) \right|_{\mathcal{C}_{00}} \qquad ext{and} \qquad e_k^r(\phi) = \left. E_k^r(\phi) \right|_{\mathcal{C}_{00}}.$$

< □ > < @ > < 注 > < 注 > ... 注

20 / 24

Elementary problems

$$\begin{split} E_{k}^{\ell}|_{\Sigma_{00}^{\ell}} &= \phi \bigvee_{C_{00}} E_{k}^{\ell}|_{\Sigma_{10}^{\ell}} = 0 \\ &= 0 \bigvee_{C_{00}} E_{k}^{r}|_{\Sigma_{00}^{\ell}} = 0 \bigvee_{C_{00}} E_{k}^{r}|_{\Sigma_{10}^{\ell}} = \phi \\ &= e_{k}^{\ell}(\phi) = E_{k}^{\ell}(\phi)|_{C_{00}} \text{ and } e_{k}^{r}(\phi) = E_{k}^{r}(\phi)|_{C_{00}}. \\ &\implies \text{ By linearity } u^{H} := u^{H}(\phi) \text{ satisfies} \\ & \begin{cases} u^{H}|_{C_{00}} = e_{k}^{\ell}(\phi) + e_{k}^{r}(\mathcal{P}_{k}\phi), \\ u^{H}|_{\Omega_{0}} = E_{k}^{\ell}(\phi) + E_{k}^{r}(\mathcal{P}_{k}\phi). \end{cases} \end{split}$$

I. Lacroix-Violet (Université Lille 1)

イロト イポト イヨト イヨト 三日

***** Determination of \mathcal{P}_k : Riccati equation

By linearity and periodicity:

$$u^{H}|_{\mathcal{C}_{00}} = E_{k}^{\ell}(\phi) + E_{k}^{r}(\mathcal{P}_{k}\phi), \quad u^{H}|_{\mathcal{C}_{10}} = E_{k}^{\ell}(\mathcal{P}_{k}\phi) + E_{k}^{r}(\mathcal{P}_{k}^{2}\phi)$$

• Determination of \mathcal{P}_k : Riccati equation

By linearity and periodicity:

$$u^{H}|_{\mathcal{C}_{00}} = E_{k}^{\ell}(\phi) + E_{k}^{r}(\mathcal{P}_{k}\phi), \quad u^{H}|_{\mathcal{C}_{10}} = E_{k}^{\ell}(\mathcal{P}_{k}\phi) + E_{k}^{r}(\mathcal{P}_{k}^{2}\phi)$$

The continuity of the normal derivative across Σ_{10}^ℓ yields

$$\frac{\partial \left(u^{H} |_{\mathcal{C}_{00}} \right)}{\partial \nu} \bigg|_{\Sigma_{10}^{\ell}} = \frac{\partial \left(u^{H} |_{\mathcal{C}_{10}} \right)}{\partial \nu} \bigg|_{\Sigma_{10}^{\ell}}$$

◆□ → ◆圖 → ◆臣 → ◆臣 → ○臣

• Determination of \mathcal{P}_k : Riccati equation

By linearity and periodicity:

$$u^{H}|_{\mathcal{C}_{00}} = E_{k}^{\ell}(\phi) + E_{k}^{r}(\mathcal{P}_{k}\phi), \quad u^{H}|_{\mathcal{C}_{10}} = E_{k}^{\ell}(\mathcal{P}_{k}\phi) + E_{k}^{r}(\mathcal{P}_{k}^{2}\phi)$$

The continuity of the normal derivative across Σ_{10}^ℓ yields

$$\frac{\partial \left(u^{H} |_{\mathcal{C}_{00}} \right)}{\partial \nu} \bigg|_{\Sigma_{10}^{\ell}} = \frac{\partial \left(u^{H} |_{\mathcal{C}_{10}} \right)}{\partial \nu} \bigg|_{\Sigma_{10}^{\ell}}$$

that is

$$\left(\nabla E_k^\ell\left(\phi\right) + \nabla E_k^r\left(\mathcal{P}_k\phi\right)\right) \cdot \nu|_{\Sigma_{10}^\ell} = -\left(\nabla E_k^\ell\left(\mathcal{P}_k\phi\right) + \nabla E_k^r\left(\mathcal{P}_k^2\phi\right)\right) \cdot \nu|_{\Sigma_{00}^\ell}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

• Determination of \mathcal{P}_k : Riccati equation

$$\left(\nabla E_k^\ell\left(\phi\right) + \nabla E_k^r\left(\mathcal{P}_k\phi\right)\right) \cdot \nu|_{\Sigma_{10}^\ell} = -\left(\nabla E_k^\ell\left(\mathcal{P}_k\phi\right) + \nabla E_k^r\left(\mathcal{P}_k^2\phi\right)\right) \cdot \nu|_{\Sigma_{00}^\ell}$$

Definition

For all function ϕ on Σ_{00}^ℓ we introduce the following local DtN operators

$$\begin{aligned} \mathcal{T}_k^{\ell\ell} \phi &= \nabla E_k^\ell(\phi) \cdot \nu \Big|_{\Sigma_{00}^\ell} \\ \mathcal{T}_k^{r\ell} \phi &= \nabla E_k^r(\phi) \cdot \nu \Big|_{\Sigma_{00}^\ell} \end{aligned}$$

$$\begin{aligned} \mathcal{T}_k^{\ell r} \phi_k &= \nabla E_k^{\ell}(\phi) \cdot \nu \Big|_{\Sigma_{10}^{\ell}} \\ \mathcal{T}_k^{r r} \phi &= \nabla E_k^{r}(\phi) \cdot \nu \Big|_{\Sigma_{10}^{\ell}} \end{aligned}$$

where ν is the outgoing unit normal to C_{00} .

• Determination of \mathcal{P}_k : Riccati equation

$$\left(\nabla E_{k}^{\ell}\left(\phi\right) + \nabla E_{k}^{r}\left(\mathcal{P}_{k}\phi\right)\right) \cdot \nu|_{\Sigma_{10}^{\ell}} = -\left(\nabla E_{k}^{\ell}\left(\mathcal{P}_{k}\phi\right) + \nabla E_{k}^{r}\left(\mathcal{P}_{k}^{2}\phi\right)\right) \cdot \nu|_{\Sigma_{00}^{\ell}}$$

Definition

For all function ϕ on Σ_{00}^ℓ we introduce the following local DtN operators

$$\begin{aligned} \mathcal{T}_{k}^{\ell\ell}\phi &= \nabla E_{k}^{\ell}(\phi) \cdot \nu \Big|_{\Sigma_{10}^{\ell}} & \mathcal{T}_{k}^{\ell r}\phi_{k} &= \nabla E_{k}^{\ell}(\phi) \cdot \nu \Big|_{\Sigma_{10}^{\ell}} \\ \mathcal{T}_{k}^{r\ell}\phi &= \nabla E_{k}^{r}(\phi) \cdot \nu \Big|_{\Sigma_{00}^{\ell}} & \mathcal{T}_{k}^{rr}\phi &= \nabla E_{k}^{r}(\phi) \cdot \nu \Big|_{\Sigma_{10}^{\ell}} \end{aligned}$$

where ν is the outgoing unit normal to C_{00} .

$$\implies \quad \mathcal{T}_k^{\ell r} \phi + \mathcal{T}_k^{r r} \mathcal{P}_k \phi = -\mathcal{T}_k^{\ell \ell} \mathcal{P}_k \phi - \mathcal{T}_k^{r \ell} \mathcal{P}_k^2 \phi$$

・ロト ・ 四ト ・ ヨト ・ ヨト

• Determination of \mathcal{P}_k : Riccati equation

$$\implies \quad \mathcal{T}_k^{\ell r} \phi + \mathcal{T}_k^{r r} \mathcal{P}_k \phi = -\mathcal{T}_k^{\ell \ell} \mathcal{P}_k \phi - \mathcal{T}_k^{r \ell} \mathcal{P}_k^2 \phi$$

Since ϕ is arbitrary, we get:

Theorem

The propagation operator \mathcal{P}_k is the unique compact operator with spectral radius strictly less than 1 solution of the stationary Riccati equation

$$\mathcal{T}_k^{r\ell} \mathcal{P}_k^2 + (\mathcal{T}_k^{\ell\ell} + \mathcal{T}_k^{rr}) \mathcal{P}_k + \mathcal{T}_k^{\ell r} = 0.$$

・ロト ・聞ト ・ヨト ・ヨト

• Determination of \mathcal{P}_k : Riccati equation

Theorem

The propagation operator \mathcal{P}_k is the unique compact operator with spectral radius strictly less than 1 solution of the stationary Riccati equation

$$\mathcal{T}_k^{r\ell} \mathcal{P}_k^2 + (\mathcal{T}_k^{\ell\ell} + \mathcal{T}_k^{rr}) \mathcal{P}_k + \mathcal{T}_k^{\ell r} = 0.$$

Proposition

For any $k-{\rm QP}$ boundary data $\phi,$ the DtN operator, associated to the half-space problem, is given by

$$\Lambda^{H}\phi = \mathcal{T}_{k}^{\ell\ell}\phi + \mathcal{T}_{k}^{r\ell}\mathcal{P}_{k}\phi.$$

<ロト <部ト <きト <きト = 3

• Determination of \mathcal{P}_k : Riccati equation

Theorem

The propagation operator \mathcal{P}_k is the unique compact operator with spectral radius strictly less than 1 solution of the stationary Riccati equation

$$\mathcal{T}_k^{r\ell} \mathcal{P}_k^2 + (\mathcal{T}_k^{\ell\ell} + \mathcal{T}_k^{rr}) \mathcal{P}_k + \mathcal{T}_k^{\ell r} = 0.$$

Proposition

For any $k-{\rm QP}$ boundary data $\phi,$ the DtN operator, associated to the half-space problem, is given by

$$\Lambda^{H}\phi = \mathcal{T}_{k}^{\ell\ell}\phi + \mathcal{T}_{k}^{r\ell}\mathcal{P}_{k}\phi.$$

For arbitrary boundary data :

$$\Lambda^{H}\phi = \sqrt{\frac{L}{2\pi}} \int_{-\pi/L}^{\pi/L} \Lambda^{H} \widehat{\phi}_{k} dk.$$

<ロト <部ト <きト <きト = 3

Done

We proposed a strategy to determine the DtN operator for infinite, lossy and locally perturbed hexagonal periodic media.

To be done

Numerical implementation and experiments

ヘロト 人間 ト 人 ヨト 人 ヨトー

Thank you for your attention !

3

イロン イ理ト イヨン イヨン